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Abstract: The enzyme cellulase, a multienzyme complex
made up of several proteins, catalyzes the conversion of
cellulose to glucose in an enzymatic hydrolysis-based
biomass-to-ethanol process. Production of cellulase en-
zyme proteins in large quantities using the fungus
Trichoderma reesei requires understanding the dynam-
ics of growth and enzyme production. The method of
neural network parameter function modeling, which
combines the approximation capabilities of neural net-
works with fundamental process knowledge, is utilized to
develop a mathematical model of this dynamic system.
In addition, kinetic models are also developed. Labora-
tory data from bench-scale fermentations involving
growth and protein production by T. reesei on lactose
and xylose are used to estimate the parameters in these
models. The relative performances of the various models
and the results of optimizing these models on two differ-
ent performance measures are presented. An approxi-
mately 33% lower root-mean-squared error (RMSE) in
protein predictions and about 40% lower total RMSE is
obtained with the neural network-based model as op-
posed to kinetic models. Using the neural network-based
model, the RMSE in predicting optimal conditions for
two performance indices, is about 67% and 40% lower,
respectively, when compared with the kinetic models.
Thus, both model predictions and optimization results
from the neural network-based model are found to be
closer to the experimental data than the kinetic models
developed in this work. It is shown that the neural net-
work parameter function modeling method can be useful
as a “macromodeling” technique to rapidly develop dy-
namic models of a process. © 1999 John Wiley & Sons, Inc.
Biotechnol Bioeng 66: 1–16, 1999.
Keywords: kinetic modeling; neural networks; parameter
function modeling; cellulase production; Trichoderma re-
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INTRODUCTION

Enzymatic hydrolysis of cellulose to glucose is carried out
by the enzyme cellulase, a multienzyme complex made up
of several proteins. The fungusTrichoderma reeseiis an
efficient producer of cellulase enzymes. Production of cel-
lulase enzyme in large quantities requires understanding and
proper controlling of the growth and enzyme production
capabilities ofT. reesei.This is an extremely complicated
system; many factors influence the organism’s ability to
grow and produce enzyme.

Strains ofT. reeseihave been studied in great detail for
more than two decades for their ability to produce the cel-
lulase enzyme complex (Esterbauer et al., 1991; Kadam,
1996; Philippidis, 1994). Most literature reports describe
experiments that have achieved a significant enzyme titer or
a high volumetric productivity. Only a few publications deal
with modeling cellulase production systems.

Most publications provide performance data for specific
strains under particular conditions without any attempt to
model the system. For example, Mohagheghi et al. (1988)
carried out a series of experiments that examined varying
the amounts of xylose and cellulose in batch cultures ofT.
reeseimutant RUT-C30. They also performed a series of
fed-batch experiments (Mohagheghi et al., 1990) using the
same medium constituents. Chaudhuri and Sahai (1993) ex-
amined enzyme production usingT. reeseiC5 growing on
lactose in batch culture. Tangnu et al. (1981) studied the
effects of various process parameters, such as temperature,
pH, carbon sources, and substrate concentration on the ratio
of mycelial growth and extracellulose enzyme production
usingT. reeseiRUT-C30. Schafner and Toledo (1992) in-
vestigated cellulase enzyme production in continuous cul-
ture byT. reeseistrain QM9414 on a xylose-based medium.
They also studied enzyme production on a xylose-based
medium supplemented with sorbose (Schafner and Toledo,
1991). Lejeune and Baron (1995) assessed the effect of
agitation on growth and enzyme production byT. reesei
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QM9414. Hendy et al. (1984) reported using fed-batch cul-
tivation to enhance cellulase enzyme production using the
RUT-C30 strain. Also, many reports have demonstrated en-
zyme production on cellulosic biomass rather than mineral-
based media supplemented with pure carbon sources. To
name a few, Acebal et al. (1988) usedT. reeseiQM9414 to
produce cellulase from wheat straw, whereas Szengyel et al.
(1997) studied cellulase production using hemicellulose hy-
drolyzate from steam-pretreated willow.

Modeling the growth and product formation characteris-
tics of various microorganisms is a very challenging task.
There are many different approaches to modeling the mi-
crobial kinetics (for an excellent review, see Nielsen and
Villadsen, 1992). Simplistic unstructured models (e.g., in-
corporating Monod kinetic terms or other empirical expres-
sions) do not offer much in terms of elucidating the exact
nature of these processes. However, more structured models
often involve introducing process variables that cannot be
estimated reliably. Several studies dealing with modeling
the growth and morphology of complex microorganisms
such as filamentous fungi have been published in recent
years (Lejeune and Baron, 1998; Nielsen, 1992, 1996).

Among the publications that consider the development of
models for cellulase enzyme production, probably the most
comprehensive model was presented by Bader et al. (1993),
who modeled the growth and enzyme production character-
istics of T. reeseiRUT-C30 using potato pulp as the cellu-
losic substrate. Their model accounted for physiological
changes in the fungal cells that better described the enzyme
production behavior. The model also incorporated certain
key features such as adsorption of enzyme onto the substrate
leading to its decomposition and hydrolysis, followed by
cell growth due to the uptake of the resulting simple sugars.
Another important feature in this model was the classifica-

tion of the substrate into amorphous and crystalline cellu-
losic components, a hemicellulosic component, and other
nondegradable components.

Rakshit and Sahai (1991) formulated an empirical model
for growth of and enzyme production by theT. reeseimu-
tant E-12 and developed an optimal control strategy for
enhancing production of the enzyme. However, they chose
not to model substrate consumption and hence their model
did not consider the dependence of cell growth on the sub-
strate concentration. Chaudhuri and Sahai (1994) estimated
some growth and maintenance parameters for cellulase bio-
synthesis onT. reeseiC5 and compared them with some
published data. Using data from continuous culture experi-
ments, they demonstrated that Monod’s equation adequately
represented the growth dynamics.

More recently, Velkovska et al. (1997) developed a ki-
netic model for batch cellulase production by RUT-C30
using solka floc (purified cellulose) as the substrate. Their
approach resulted in a model that was simpler than that of
Bader et al. (1993) by ignoring the actual composition of the
enzyme complex. Their model took into account the mor-
phological and physiological changes that occur during
growth ofT reeseicells, and was structured in biomass and
substrate reactivity variables but unstructured with respect
to intracellular mechanisms and molecular species.

Although many data are available for strains ofT. reesei,
such as RUT-C30, not much work has been done in quan-
tifying the dynamics of other strains such as RL-P37. In this
work, we develop three models for growth and enzyme
production byT. reeseiRL-P37 on a soluble sugar substrate
system (lactose and xylose). The first two are kinetic models
incorporating different degrees of structure. The third is
based on the neural network parameter function approach.
The motivation for using neural network parameter func-
tions is to improve the accuracy and predictive capabili-
ties of kinetic models (Tholudur and Ramirez, 1996), and
this approach has been successfully applied to protein
production by recombinant bacteria (Tholudur and

Table I. Growth media composition.

Component Stage 1 Stage 2 Fermentor

Salts
KH2PO4 (g/L) 3.8 3.8 3.8
MgSO4 ? 7H2O (g/L) 0.6 0.6 0.6
CaCl2 ? 2H2O (g/L) 0.8 0.8 0.8
(NH4)2SO4 (g/L) 5 5 5, 7.5, 10, 12.5, 15

Trace minerals
FeSO4 ? 7H2O (mg/L) 5 5 5
MnSO4 ? H2O (mg/L) 1.6 1.6 1.6
ZnSO4 ? 7H2O (mg/L) 1.4 1.4 1.4
CoCl2 ? 6H2O (mg/L) 3.7 3.7 3.7

Protein supplementation
Corn steep liquor (% v/v) 2 2 2

Carbon source
Glucose (% w/v) 2 — —
Xylose (% w/v) — 1 1
Lactose (% w/v) — 1 1, 2, 3, 4, 5

Miscellaneous
Tween-80 (mL/L) — — 0.2
Antifoam (mL/L) — — 0.1

Table II. Estimated parameters for the unstructured kinetic model.

Parameter Value Parameter Value

mmax,L 0.0493 h−1 YL 0.3770 g/g
KS,L 0.2346 g/L YZ 0.6842 g/g
KI,L 50.26 g/L kd 0.0065 h−1

mmax,Z 0.1253 h−1 a 0.0409
KS,Z 5.734 g/L b 0.0015 h−1

Figure 1. Schematic representation of the unstructured kinetic model.

2 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 66, NO. 1, 1999



Ramirez, 1999). Here, we report on extending the applica-
tion of this approach to cellulase production byT. reesei
RL-P37.

Because the neural network parameter function modeling
method can be considered a “macromodeling” approach that
utilizes just fundamental macroscopic material balances
(i.e., no information on the structure of the system at the
microscopic level is incoporated), it is reasonable to attempt
the development of kinetic models of similar complexity for
comparison of the different approaches. Furthermore, the
incorporation of fundamental process knowledge in the neu-
ral network parameter function modeling method makes it a
hybrid modeling scheme and moves it out of the realm of
pure “black-box” modeling and puts it on par with the other
kinetic modeling methods discussed in this article.

The following sections describe the experiments con-
ducted and the development of the three mathematical mod-
els, followed by a comparison of the models and their ap-
plication to predict optimal operating conditions.

MATERIALS AND METHODS

Microorganism

Trichoderma reeseiRL-P37 (obtained from B.S. Montene-
court, Lehigh University) was used in this work and was
maintained on V8-based media plates as suggested by
Schell et al. (1990).

Culture Medium and Cultivation

A two-stage preinoculum culture growth method was used.
Stage 1 consisted of a 500-mL baffled shake flask with a
100-mL working volume, and stage 2 consisted of 2000-mL
baffled shake flasks with a 350-mL working volume. One
milliliter of frozen stock culture was transferred to stage 1
as preinoculum, and 17.5 mL of the growth culture was then
transferred to stage 2 as inoculum for the fermentor. Table
I summarizes the media constituents for the various stages.

Figure 2. (a) Growth and production kinetics as predicted by the unstructured kinetic model (initial xylose4 1% w/v, initial lactose4 1% w/v). (b)
Growth and production kinetics as predicted by the unstructured kinetic model (initial xylose4 1% w/v, initial lactose4 3% w/v). (c) Growth and
production kinetics as predicted by the unstructured kinetic model (initial xylose4 1% w/v, initial lactose4 5% w/v).
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New Brunswick Scientific BioFlo 3000 fermentors
equipped with temperature, pH, and dissolved oxygen (DO)
control were used. Fermentations were run at a working
volume of 3 L in 5-L vessels. Three hundred milliliters of
the stage 2 culture was used to inoculate the fermentors. The
temperature was kept constant at 28°C, agitation was main-
tained at 450 rpm, and the pH was maintained at 4.8 using
concentrated NH4OH and H3PO4. The level of DO was
maintained at approximately 20% of air saturation using air
supplemented with pure oxygen, except for periods of rapid
growth when DO levels fell below 20%.

T. reeseican grow on a variety of substrates. However,
most strains of this fungus do not produce the cellulase
enzyme complex in appreciable quantities unless they are
grown on the insoluble substrate cellulose. The use of in-
soluble substrate leads to difficulties with accurate determi-
nation of cell mass in the presence of other insoluble com-
ponents. Thus, keeping in mind that the aim of this work
was to demonstrate the applicability of the neural network
parameter function modeling technique, a soluble sugar
substrate system was employed. Lactose, a soluble sugar,
also induces the production of cellulase, although to a lesser

extent than cellulose. To add complexity to the modeling
endeavor, xylose was also used, and the models were re-
quired to capture the preferential uptake of xylose over lac-
tose.

The experimental design consisted of varying the initial
levels of lactose with a constant initial xylose concentration.
The initial xylose concentration was maintained at approxi-
mately 1% w/v and the initial lactose concentration was
varied. Five fermentors with initial lactose levels of ap-
proximately 1%, 2%, 3%, 4%, and 5% w/v were run. As
shown in Table I, the initial amounts of (NH4)2SO4 were
varied so as to obtain an initial C:N ratio close to 8 (grams
C:grams N).

One of the experiments (3% w/v initial lactose concen-
tration) was repeated and it was found that the growth and
protein production data reproduced fairly well. Hence, it
was deemed unnecessary to repeat the rest of the lactose
concentrations.

Analytical Techniques

All fermentations were run for 120 h. Samples of about 40
mL were taken frequently, and typically ten samples were
obtained for each fermentation over the course of the ex-
periment. Samples were analyzed for dry cell weight,
soluble sugar concentrations, and protein levels, as ex-
plained in what follows.

Cell Mass

Cell concentrations (as grams dry cell mass per liter [g
DCM/L]) were determined using preweighed Gelman glass

Table III. Estimated parameters for the structured kinetic model.

Parameter Value Parameter Value

mmax,L 0.1008 h−1 k1 0.0610 h−1

KS,L 0.0194 g/L k2 0.0069 h−1

KI,L 6.502 g/L kd1 0.0099 h−1

YL 0.4106 g/g kd2 0.0089 h−1

mmax,Z 0.2016 h−1 a 0.0525
KS,Z 4.993 g/L b 0.0025 h−1

YZ 0.6418 g/g

Figure 2. Continued.

Figure 3. Schematic representation of the structured kinetic model.
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fiber filters. Four milliliters of the fungal samples were
filtered onto the membrane, washed twice with deionized
water, and allowed to dry at room temperature under
vacuum. Triplicates of the analysis were performed for each
sample to estimate the reproductability of the cell concen-
tration measurement.

Substrate

Sugar concentrations (lactose and xylose) were determined
using an HPLC (HP 1090 with CHEMSTATION software)
equipped with a Bio-Rad organic acids column (HPX-87H,
300 × 7.8 mm) operating at 65°C. Dilute sulfuric acid
(0.01N) was used as the mobile phase at a flow rate of 0.6
mL/min.

Protein

Protein concentrations in the culture supernatants were es-
timated by UV absorbance following chromatographic frac-

tionation using a 5-mL Pharmacia Hi-Trap column packed
with Sephadex G-25. This is a modification of the method
described by Adney et al. (1995). A Beckman System Gold
HPLC system equipped with the programmable Model 126
solvent module, Model 507 autosampler, and a Model 166
variable wavelength detector was used to separate proteins
from media components and low-molecular-weight pro-
teins. The Beckman System Gold software was used to
integrate peak areas and determine peak heights.

Samples were diluted and subjected to chromatography in
20 mM acetate, 100 mM NaCl (pH 5.0) buffer. The system’s
autosampler was then used to inject the samples in 100-mL
volumes with the flow rate maintained at 2 mL/min. Seph-
adex G-25 has an exclusion limit of approximately 5000 Da
and can be used for the group separation of proteins >5000
Da from smaller peptides typically present in the nutrient
media. Only the void volume peak was assumed to be pro-
tein >5000 Da and was included in the total protein calcu-
lation calibrated using bovine serum albumin standard so-

Figure 4. (a) Growth and production kinetics as predicted by the structured kinetic model (initial xylose4 1% w/v, initial lactose4 1% w/v). (b) Growth
and production kinetics as predicted by the structured kinetic model (initial xylose4 1% w/v, initial lactose4 3% w/v). (c) Growth and production kinetics
as predicted by the structured kinetic model (initial xylose4 1% w/v, initial lactose4 5% w/v).
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lutions. This method provides a reasonable estimation of the
total hydrolytic enzyme concentration based on the assump-
tion that only proteins produced by the fungus and secreted
into the culture broth, and not proteins present in the nutri-
ent medium, should contribute to the absorbance in the void
volume of the column.

MODEL DEVELOPMENT

Three models of the growth and protein production dynam-
ics are developed in this section.

Unstructured Kinetic Model

Model Development

The simplest kinetic model assumes that sugars are con-
verted into mycelial cell mass, which produces enzyme as
shown in Figure 1. The differential equations describing this
system are as follows:

dL

dt
= −mLX/YL (1)

dZ

dt
= −mZX/YZ (2)

dX

dt
= mLX + mZX − kdX (3)

dP

dt
= rPX (4)

whereL, Z, X,andP are the lactose, xylose, cell mass, and
protein concentrations, respectively. The specific growth
rates on lactose and xylose aremL andmZ, respectively;YL

andYZ are the corresponding cell mass yields on lactose and
xylose.kd is an endogenous death term andrP is the specific
protein production rate. When both lactose and xylose are
present in the medium, xylose is preferentially taken up.
The following forms are postulated for the specific growth
rate and protein production rate:

mL =
mmax,LL

KS,L + L

KI,L

KI,L + Z
(5)

mZ =
mmax,ZZ

KS,Z + Z
(6)

rP = amL + b t $ 24 h (7)

rP = 0 t , 24 h

Parameter Estimation

Parameters in the differential equations were estimated by a
nonlinear least-squares routine (lsqnonlin.m ) in the Op-
timization Toolbox (Coleman et al., 1999) of the MATLAB

environment. The sum-squared error between the model
predictions and the experimental data consisting of cell
mass, xylose, lactose, and protein concentrations was mini-
mized. Because the minimization of the sum of squares for
a general nonlinear problem is quite dependent on the initial
guesses for the parameters, various starting points were pro-
vided and the final parameter set that had the lowest sum-
squared error was chosen. In addition, the initial conditions
for the xylose and protein concentrations were assumed to
be at an average value of 10.68 g/L and 0.75 g/L (obtained
by averaging the initial values for these variables from the
various experiments), respectively.

The estimated parameters are summarized in Table II.

Model Evaluation

The performance of this model is illustrated in Figure 2,
which shows a comparison of the model predictions and
experimental data for experiments carried out at initial lac-
tose levels of approximately 1%, 3%, and 5% w/v. As this
figure shows, the dynamics of lactose and xylose utilization
are captured well, but the cell mass and protein production

Figure 4. Continued.
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dynamics are not. Clearly, this very basic model does not
have enough features to describe effectively the dynamic
behavior of the system. In particular, the protein dynamics
are not well described. This result provides the motivation
for developing a more descriptive structured kinetic model.

Structured Kinetic Model

Model Development

The structured kinetic model incorporates a limited amount
of structure in the cell mass component as depicted in Fig-
ure 3. As suggested by Velkovska et al. (1997) and Mat-
sumura et al. (1981), cell mass is divided into three catego-
ries—primary mycelia, secondary mycelia, and spores. The
governing differential equations describing this system are
as follows:

dL

dt
= − mLXp/YL (8)

dZ

dt
= − mZXp/YZ (9)

dXp

dt
= ~mL + mZ − k1 − kd1!Xp (10)

dXs

dt
= k1Xp − ~k2 + kd2!Xs (11)

dXo

dt
= k2Xs (12)

dX

dt
=

dXp

dt
+

dXs

dt
+

dXo

dt
= ~mL + mZ!Xp − kd1Xp − kd2Xs

(13)

dP

dt
= rPXs (14)

whereL, Z, X,andP are the lactose, xylose, cell mass, and
protein concentrations, respectively, andXp, Xs, andXo are
the cell mass contributions from primary mycelia, second-
ary mycelia, and spores. The specific growth rates on lac-
tose and xylose aremL andmZ, respectively;YL andYZ are
the corresponding cell mass yields on lactose and xylose.k1

andk2 are constant rate terms for the conversion of primary
mycelia to secondary mycelia and for the conversion of
secondary mycelia to spores, respectively.kd1 and kd2 are
endogenous death terms andrP is the specific protein pro-
duction rate. The postulated forms for the specific growth
rates and production rate terms are the same as in the un-
structured kinetic model.

Parameter Estimation

A similar procedure as outlined in the section for the esti-
mation of parameters in the unstructured model is followed.
The estimated parameters are summarized in Table III.

Model Evaluation

The performance of this model is illustrated in Figure 4. As
with the unstructured kinetic model, the dynamics of lactose
and xylose utilization are captured fairly well. Although the
protein dynamics track the data somewhat better than in the
unstructured kinetic model, incorporation of the different
cell growth stages into the model equations does not dra-
matically improve predictions about the dynamics of protein
production. The assumption of a particular functional form
for rP in both the unstructured and structured models limits
our ability to adequately simulate the dynamics of protein
production.

Neural Network Parameter Function Model

Model Development

As presented by Tholudur and Ramirez (1996, 1999), the
neural network parameter function methodology of model-
ing dynamic systems is a hybrid modeling technique that
uses fundamental process knowledge in the form of conser-
vation equations in combination with the function approxi-
mation capabilities of neural networks. Material balances on
each major component being produced or consumed in the
batch fermentations result in the following governing dif-
ferential equations:

dL

dt
= − rLX (15)

dZ

dt
= − rZX (16)

Table IV. Normalization values used in the neural network model.

Variable name Symbol Normalization value

Time t 120 h
Lactose concentration L 60 g/L
Xylose concentration Z 12 g/L
Cell density X 28 g/L
Protein concentration P 5 g/L

Table V. Neural network training details.

Function Inputs RMSE

rL t, L 3.1 × 10−3

rz L, Z 1.1 × 10−3

rx t, L,Z,X 1.1 × 10−4

rP t, X, P 1.7 × 10−4
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dX

dt
= rXX (17)

dP

dt
= rpX (18)

whereL, Z, X,andP are the lactose, xylose, cell mass, and
protein concentrations, respectively. The modeling problem
is one of estimating the parameter functionsrL, rZ, rX, and
rP, which are the specific lactose consumption rate, specific
xylose consumption rate, specific cell growth rate, and spe-
cific protein production rate, respectively.

In the traditional kinetic modeling approaches, as pre-
sented in the earlier sections, a functional form is postulated
for each function (e.g., Monod growth kinetics or a combi-
nation of primary and secondary metabolite formation), and
the parameters in these functions are then evaluated. In the
neural network parameter function modeling technique, the
conservation equations are rewritten and solved for the un-
known functions as follows:

−rL =
dL

dt
/X (19)

−rZ =
dZ

dt
/X (20)

rX =
dX

dt
/X (21)

rP =
dP

dt
/X (22)

Training data are then generated using these relation-
ships. Specific algebraic input–output forms are assumed
for each unknown functionrL, rZ, rX, and rP. The method-
ology used to estimate the parameter functions is described
in what follows.

Time Derivative and Parameter
Function Evaluations

For the evaluation of the parameter functions, the time de-
rivatives of the measured variables need to be estimated. To

Figure 5. (a) Comparison of neural network predictions and actual training data for parameter function,rL. (b) Comparison of neural network predictions
and actual training data for parameter function,rz. (c) Comparison of neural network predictions and actual training data for parameter function,rx. (d)
Comparison of neural network predictions and actual training data for parameter function,rP.
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obtain these derivatives, we performed curve fits of the
original experimental data and analytically differentiated
the curve fits to obtain the derivatives. Protein production
exhibits sigmoidal functional characteristics. Lactose and
xylose concentrations exhibit monotonically decreasing sig-
moidal behavior with respect to time. Thus, a logistic curve
of the following form is fit for each of these variables to
estimate the derivatives:

V ~t! =
c1

1 + e−c2~t−c3!
(23)

To better explain the protein dynamics, a lag term is also
introduced (no protein production during the lag portion) to
improve estimation of the derivatives. The cell mass con-
centration grows exponentially at first but fall once the sug-
ars are consumed. The logistic equation presented above
cannot describe these dynamics. Hence, a modified logistic
function with one additional parameter is used:

V ~t! =
c1e

−c4t

1 + e−c2~t−c3!
(24)

The curve fit, derivative estimation, and parameter func-
tion evaluation procedures were performed independently
for each experimentally obtained data set. A sampling time
of 0.5 h was used during this process—that is, the deriva-
tives and parameter functions were estimated at 0.5-h inter-
vals. This leads to a training data set that consists of 1205
input–output pairs for each parameter function. Such a short
sampling time is necessary to justify the assumption of
piecewise constant parameter functions between sampling
points. In addition, the data were first normalized by divid-
ing the variables with the appropriate normalization factor
so that the magnitude of all the variables would be between
0 and 1. This helped in providing better fits of the logistic
equations as well as in training the neural networks in the
next stop. Table IV summarizes the normalization values
that were used.

Figure 6. (a) Growth and production kinetics as predicted by the neural network-based model (initial xylose4 1% w/v, initial lactose4 1% w/v). (b)
Growth and production kinetics as predicted by the neural network-based model (inital xylose4 1% w/v, initial lactose4 3% w/v). (c) Growth and
production kinetics as predicted by the neural network-based model (initial xylose4 1% w/v, initial lactose4 5% w/v).
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Neural Network Training

After estimating the dynamic response data, the next step is
to train the parameter function neural networks to mimic the
training data. Because the parameter functions are static
mappings (between the parameter functions and the mea-
sured variables), feedforward neural networks were chosen.
A key issue in neural network training is the concept of
generalization. A measure of the ability of the neural net-
work to predict based on data it has not seen before is the
generalization error (Geman et al., 1992; Moody, 1992). A
lower generalization is always desirable. One method for
improving generalization is to use a process known as regu-
larization. The MATLAB Neural Network Toolbox (Demuth
and Beale, 1998) provides a routine that trains neural net-
works using a combination of Bayesian regularization
(MacKay, 1992) and Levenberg–Marquardt (Hagan and
Menhaj, 1994) optimization. This routine (trainbr.m )
was used to train the neural network parameter functions.

The choice of inputs for each network is another key
issue. A correlation coefficient of all the data was estimated

and used as a guide to choose the inputs for each network.
Variables that were highly correlated with a particular pa-
rameter function were used as inputs for the corresponding
parameter function neural network. Four neural networks
were trained—one for each parameter function. All neural
networks were trained with 20 hidden neurons (hyperbolic
tangent activation function) and 1 output neuron (logistic
activation function) for 1000 epochs. Table V summarizes
the inputs used in the neural networks and the training per-
formances achieved. A lower root-mean-squared error
(RMSE) implies a better training performance. In addition,
it is of interest to note the use oft as one of the inputs for
three of the networks, the exception beingrZ. The inclusion
of time has been observed earlier with the inducible bacteria
systems (Tholudur and Ramirez, 1999).

The performance of the neural networks is also illustrated
in Figure 5, which compares the network performance with
the actual training data for each network. The figure shows
that the parameter function neural networks capture the
training data well.

Model Evaluation

Once the neural network parameter functions are trained,
the next step is to examine the predictive capabilities of the
complete model. This is summarized in Figure 6. As can be
seen, in addition to capturing the dynamics of lactose and
xylose consumption, the neural network-based model de-
scribes the dynamics of cell growth and protein production
well. Comparison of Figures 2, 4, and 6 shows that the
neural network-based model best captures the dynamics of
the system among the models presented. In addition, the
predictive capabilities of the neural network-based model
on the remaining experimental data are shown in Figure 7.
Quantification of the predictive capabilites of the various
models is summarized in Table VI where the RMSE of the
models for each of the state variables is presented. The
consistently lower RMSE for the neural network model sug-
gests that this model is more accurate than the kinetic mod-
els.

INTERPOLATED PARAMETER FUNCTIONS

The development of kinetic and neural network parameter
function models for describing the dynamics of cell growth
and cellulase enzyme production was presented in the pre-
vious section. The performance of these models on the ex-
perimental data was demonstrated. The optimization
method used in the next section to obtain optimal opera-
tional conditions requires the model predictions at interme-
diate conditions as well (i.e., for initial lactose concentra-
tions other than those for which experiments were con-
ducted). In the case of the kinetic models, this is a trivial
task because of the assumption of continuous parameter
functions. However, in the case of the neural network pa-
rameter function models, the neural network might not be

Figure 6. Continued.
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able to predict reasonable values for some of these condi-
tions.

The concept of interpolated parameter functions is used
to obtain dynamic profiles of the states for conditions other
than those for which experiments were conducted. For ex-
ample, in this study, experiments were conducted at initial
lactose concentrations of approximately 1%, 2%, 3%, 4%,
and 5% w/v. The neural network parameter function model
works extremely well for these initial conditions. To obtain
the dynamic response for an initial lactose concentration of,

say, 3.7% w/v, a weighted average of the parameter func-
tions for the two nearest experimental points (3% and 4%)
is used. This is different than a weighted average of the
profiles. The interpolated parameter function method pro-
vides us with a means to use the neural network parameter
functions with very few experiments. This methodology is
summarized next.

Assume thatN experiments are conducted by varying the
initial conditions Cj, j 4 1, 2, 3, . . . ,N. The parameter
functions profiles,Fj(t), are obtained for these conditions
using the techniques just explained. To obtain the parameter

Table VI. Quantification of the predictive capabilities of the various
models.

Model name

Root-mean-squared error

Lactose Xylose Cell Mass Protein Total

Unstructured kinetic 1.3887 0.6039 0.9518 0.2113 1.8011
Structured kinetic 1.3478 0.6129 0.9603 0.2047 1.7766
Neural network 0.4202 0.4560 0.9204 0.1346 1.1179

Table VII. Parameters used in the performance index expressions.

Parameter Value

V 3 L
CL $0.15/lb.
CP $4/lb.
Qmax 0.0615 g/(L? h)
Pmax 12 g

Figure 7. (a) Growth and production kinetics as predicted by the neural network-based model (initial xylose4 1% w/v, initial lactose4 2% w/v). (b)
Growth and production kinetics as predicted by the neural network-based model (initial xylose4 1% w/v, initial lactose4 4% w/v).
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function profile,FI(t), for an initial condition,CI, determine
M (1 # M # N − 1) such thatCM # CI # CM+1. Then,
definek 4 CI − CM/CM+1 − CM. The interpolated function
is defined asFI(t) 4 (1 − k)FM(t)+ kFM+1(t). Repeat this
process for all the parameter functions. These interpolated
parameter functions are then used in the governing differ-
ential equations, which are integrated to provide the dy-
namic profiles of the states for the intermediate initial con-
dition.

The main advantage of this approach is the ability to
obtain accurate interpolated information with a minimum of
experimental data. For the neural networks to be able to
interpolate directly would require a great deal more experi-
mental training data sets.

MODEL OPTIMIZATION

One objective for developing predictive dynamic models of
processes is to use these models for process optimization.
Optimization requires identifying the critical process vari-
ables, formulating performance indices that reflect the in-
teractions among these variables, and finally choosing a
strategy to maximize or minimize the performance indices.

In this particular process, two performance indices can be
readily formulated, involving lactose, protein, and time as
the critical variables. The first performance index,J1, bal-
ances the estimated protein value against the cost of lactose
and can be written on a total protein basis as:

J1 = P~t!V −
CL

CP
L~t0!V (25)

whereP(t) is the protein concentration at timet, L(t0) is the
lactose concentration at timet 4 0, V is the fermentation
volume, andCL andCP are the cost of lactose and value of
protein, respectively. Thus, this performance index provides
a measure of the tradeoff between the value of the protein
and the operating cost of using lactose as a carbon source
and expresses the result in terms of net valuable protein (g).

Another important performance index is the average
volumetric productivity of the system. Due to the absence
of significant protein production during the first 24 h of
the fermentation, the productivity performance index is de-
fined as:

J2 =
P~t! − P~t = 24!

t
t $ 24 (26)

This performance index has units of grams per liter per hour
[g/(L?h)].

It is possible (and often very probable) that the optima
resulting from either of these two performance indices
would be different. Under such conditions, it might be nec-
essary to arrive at a compromise. A weighted overall per-
formance index of the following form can then be consid-
ered:

J = g
J2

Qmax
+ ~1 − g!

J1

Pmax
(27)

whereQmax andPmax are normalization factors correspond-
ing to maximal productivity and protein amount andg is a
parameter that expresses the relative weightings of the two
performance indices.

For the purpose of illustration, the parameters in Table
VII were used to calculate values of the three performance
index expressions.

The results of the optimization of the performance indi-
ces,J1 andJ2, using the three process models, are summa-
rized in Figure 8. This figure clearly shows the existence of
different and competing optima for the two performance
indicesJ1 andJ2. For example, theJ1 andJ2 contours for the
unstructured kinetic model suggest that the optimum for
maximizing J1 is at about 5.5% w/v initial lactose and a
final time of 120 h, whereas the optimum for maximizingJ2

is at about 5.5% w/v initial lactose and a final time of 78 h.
Similarly, the contours for the structural kinetic model sug-
gest an optimum forJ1 at about 5.5% w/v initial lactose
level and a final time of 120 h, whereas the optimum forJ2

is at a similar lactose level but a reduced final time of about
83 h. And, finally, the contours obtained using the neural
network model suggest an optimum of about 3.5% w/v ini-
tial lactose and a final time of 120 h for maximizingJ1, but
an optimum of about 5.4% w/v initial lactose and a final
time of about 78 h for maximizingJ2. Table VIII summa-
rizes the optimal conditions obtained for each of these in-
dices.

Comparison of the protein profiles predicted by the mod-
els shows that the unstructured and structured kinetic mod-
els exhibit significantly slower dynamics than seen in the
experimental data. Hence, optimization of these dynamic
performance indices using these models is not expected to
provide accurate results. Considering that the dynamic be-
havior of the system is best captured by the neural network
model, it is expected that the results of optimizing the neural
network model be most accurate among the developed mod-
els. This is further demonstrated in Figure 9, which com-
pares the performance indices predicted by the models with
the experimental data. In Figure 9a, the values of the per-
formance index,J1, as predicted by the various models at a
fixed final time of 120 h and as a function of the initial
lactose concentration are shown. In Figure 9b, the values of
the performance index,J2, as predicted by the various mod-
els at a fixed initial lactose concentration of about 5.5% w/v,
and as a function of time, are shown. The neural network-
based model predicts performance index profiles that are
closest to the experimental data. For the performance index
predictions shown in Figure 9, the root-mean-squared errors
are calculated and summarized in Table IX. Once again, the
neural network-based model has the lowest RMSE in the
optimal performance index predictions. As a result, it can be
concluded that the opimization results from the neural net-
work-based model are closest to the true optimum.
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CONCLUSIONS

The development and comparison of traditional kinetic
modeling and neural network parameter function modeling
as applied to a biotechnology process involving the produc-
tion of cellulase proteins has been presented. Experimental
data were used in the estimation of parameters in the various
models. The models were developed using a similar amount
of prior knowledge of the process (in terms of basic material
balances). The predictive capabilities of the neural network-
based model were superior to the unstructured and struc-
tured kinetic models developed. This is borne out by the
consistently lower RMSE values in the model predictions
for the process state variables. An approximately 33% lower
RMSE in protein predictions and about 40% lower total
RMSE was obtained with the neural network-based model

as opposed to the kinetic models. Optimal conditions for the
operation of the batch system were identified to demonstrate
the practical applicability of modeling and optimizing sys-
tem performance using the neural network parameter func-
tion modeling techniques. Once again, a comparison with
the experimental data revealed that the neural network-
based model predicted optimal conditions that were closer
to the experimental observations than the other models. Us-
ing the neural network-based model, the RMSE in predict-
ing theJ1 andJ2 preformance indices were about 67% and
40% lower, respectively, when compared with the kinetic
models.

The neural network parameter function modeling scheme
does suffer from the drawback that it does not provide any
insight into the underlying mechanisms that describe the
system. A similar observation can be made for the unstruc-

Figure 8. (a) Contour plots of the two performance indices using the unstructured kinetic model. (b) Contour plots of the two performance indices using
the structured kinetic model. (c) Contour plots of the two performance indices using the neural network-based model.
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tured kinetic model. Of the three models developed in this
work, the structured kinetic model is probably the best in
terms of describing the underlying phenomena. However,
the neural network based method has the advantage of being

able to be developed quite rapidly, thus enabling quicker
optimization of the process.

A simplified system utilizing soluble sugars as the carbon
source for the organism was used in this work. Currently,
we are working on applying the modeling principles outlined
in this work to a more complex insoluble substrate system.

Table VIII. Optimal conditions predicted by the different models.

Model name
Performance

index
Maximum

value

Optimal
conditions

L(t0)
(g/L)

tf
(h)

Unstructured kinetic J1 6.49 g 54.70 120.0
Structured kinetic J1 6.80 g 54.70 120.0
Neural network J1 6.56 g 33.25 120.0

Unstructured kinetic J2 0.0302 g/(L? h) 54.70 78.0
Structured kinetic J2 0.0319 g/(L? h) 54.70 83.0
Neural network J2 0.0336 g/(L? h) 54.08 78.0

Table IX. RMSE values for the performance index predictions in Fig-
ure 9.

Model name
Performance

index
Prediction

RMSE

Unstructured kinetic J1 0.70 g
Structured kinetic J1 0.74 g
Neural network J1 0.21 g

Unstructured kinetic J2 0.0049 g/(L? h)
Structured kinetic J2 0.0048 g/(L? h)
Neural network J2 0.0031 g/(L? h)

Figure 8. Continued.

Figure 9. Comparison of optimal predictions of the models with experi-
mental data.
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NOMENCLATURE

c1, c2, c3, c4 parameters in the logistic equation
Cj experimental conditions
Fj parameter function profile corresponding to the experi-

mental conditionCj

J Weighted overall performance index
J1 relative protein amount (g)
J2 average volumetric protein productivity [g/(L? h)]
k1 conversion rate of primary mycelia to secondary mycelia

(h−1)
k2 conversion rate of secondary mycelia to spores (h−1)
kd endogenous death rate (h−1)
kd1 primary mycelial cell lysis rate (h−1)
kd2 secondary mycelial cell lysis rate (h−1)
KI,L inhibition constant for xylose on lactose (g/L)
KS,L saturation constant for lactose (g/L)
KS,Z saturation constant for xylose (g/L)
L lactose concentration (g/L)
P hydrolytic protein concentration (g/L)
Pmax maximum protein amount (g)
Qmax maximum volumetric protein productivity [g/(L? h)]
−rL specific lactose consumption rate (h−1)
rP specific protein production rate (h−1)
rX specific cell growth rate (h−1)
−rZ specific xylose consumption rate (h−1)
V fermentor volume (L)
X fungal cell concentration (g/L)
Xo spore concentration (g/L)
Xp primary mycelial concentration (g/L)
Xs secondary mycelial concentration (g/L)
YL yield of fungal cells on lactose (g/g)
YZ yield of fungals cells on xylose (g/g)
Z xylose concentration (g/L)
a constant in specific protein production rate
b constant in specific protein production rate (h−1)
g performance index weighting parameter
k interpolating weighting parameter
mL specific growth rate on lactose (h−1)
mmax,L maximum specific growth rate on lactose (h−1)
mmax,Z maximum specific growth rate on xylose (h−1)
mZ specific growth rate on xylose (h−1)
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